

Emissions testing of a 110kVA, Stage IIIA Power Generator. Analysis of Data measurements carried out by Emissions Analytics. Comparison of Emissions with Diesel, HVO and Green D+ fuels

Introduction

Emissions Analytics carried out emissions studies in January and February 2021 on a dieselpowered generator. The results obtained on the Stage IIIA engine were compiled in a report (EA report 20210222v2.0). This report is an analysis of the data supplied by EA.

Experimental details

Three fuels were tested. Each was tested in triplicate.

Engine: ElectropaK, 1104D-E44TAG2, Stage IIIA engine.

Measuring Equipment: PEMS testing equipment used by EA was a SEMTECH-LDV gas analyser. The analyser measured CO, CO₂, NO, NO₂. A Sensors Condensate Particle Number was used to quantify particle number.

Calibration was carried out with Zero and Span gas measurements at the start and end of each cycle.

Test cycle: from a cold start, the engine was run up the power output to 100% over 10 minutes. The five modes were run in sequence. The 10-minute stabilisation period was followed by 10 minutes measurement.

Table 1: Gaseous emissions with three fuels on Stage IIIA engine						
ISO 8178 - D2 values - No SCR						
	CO 2	СО	NO	NO 2	NOx	PN
	g/s	g/s	mg/s	mg/s	mg/s	#x10 ¹¹ /s
Diesel	8.9	4.2	34.7	2.8	37.5	25.9
HVO	8.3	4.5	31.6	2.3	33.9	14.7
GD+	8.2	3.2	31.7	2.2	33.9	10.3
	CO 2	СО	NO	NO 2	NOx	PN
	g/kWh	g/kWh	g/kWh	g/kWh	g/kWh	tx10 ¹¹ /kWh
Diesel	937	0.66	3.31	0.34	3.66	3864
HVO	855	0.67	3.02	0.27	3.29	2125
GD+	852	0.51	3.03	0.26	3.29	1542
%	CO 2	СО	NO	NO 2	NOx	PN
Diesel	100	100	100	100	100	100
HVO	91.2	101.5	91.2	79.4	89.9	55.0
GD+	90.9	77.3	91.5	76.5	89.9	39.9
%	CO 2	СО	NO	NO 2	NOx	PN
Diesel	0	0	0	0	0	0
HVO	-8.8	1.5	-8.8	-20.6	-10.1	-45.0
GD+	-9.1	-22.7	-8.5	-23.5	-10.1	-60.1

Results

Figure 1: Emissions with three fuels and % reduction relative to diesel

#x1011/kWh

ΡN

3864

2125 1542

Discussion and Conclusions

- CO₂ emissions are reduced by 8.8% and 9.1% with HVO and Green D+ respectively, relative to diesel. The expected decrease is ~3%. The greater reduction indicates a fuel efficiency improvement.
- Incomplete combustion products, CO and PN show a significant reduction with Green D+ of 23% (for CO) and 60% (for PN), relative to diesel. HVO also shown significant reduction relative to diesel in PN of 45%. The indication is that Green D+ is outperforming HVO, which is itself significantly cleaner than diesel.

Green D+ >> HVO >>> Diesel - for reducing incomplete combustion emissions.

• NOx emissions with both HVO and Green D+ are reduced by 10% relative to diesel.

Green D+ ~ HVO >> Diesel - for reducing NOx emissions.

Note: These data were obtained and supplied by Emissions Analytical. The analysis of the data in this report are by GBF. All the data provided by EA have been included. [AFP reference: AFP analysis of EA_StageIIIA_DvsHVOvsGD.xlsx]